A290800 One of the two successive approximations up to 7^n for the 7-adic integer sqrt(-6). These are the numbers congruent to 1 mod 7 (except for the initial 0).
0, 1, 22, 120, 120, 9724, 26531, 144180, 144180, 17438583, 259560225, 259560225, 259560225, 83307283431, 180196293838, 2893088585234, 17135773115063, 116834564823866, 582095592798280, 10352577180260974, 55948157921753546, 454909489409813551
Offset: 0
Keywords
Examples
a(1) = 1_7 = 1, a(2) = 31_7 = 22, a(3) = 231_7 = 120, a(4) = 231_7 = 120, a(5) = 40231_7 = 9724.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1183
- Wikipedia, Hensel's Lemma.
Programs
-
Maple
with(padic): R:= [rootp(x^2+6,7,100)]: R1:= op(select(t -> ratvaluep(evalp(t,7,1))=1, R)): seq(ratvaluep(evalp(R1,7,n)),n=0..100); # Robert Israel, Aug 11 2017
-
PARI
a(n) = if (n, truncate(sqrt(-6+O(7^(n)))), 0)
Formula
a(0) = 0 and a(1) = 1, a(n) = a(n-1) + 3 * (a(n-1)^2 + 6) mod 7^n for n > 1.
Comments