A290806 One of the two successive approximations up to 7^n for the 7-adic integer sqrt(-5). These are the numbers congruent to 3 mod 7 (except for the initial 0).
0, 3, 17, 311, 997, 3398, 20205, 608450, 2255536, 25314740, 25314740, 307789989, 8217096961, 77423532966, 368090564187, 4437429001281, 4437429001281, 4437429001281, 4437429001281, 3261264624822179, 3261264624822179, 3261264624822179, 1120352992791390193
Offset: 0
Keywords
Examples
a(1) = 3_7 = 3, a(2) = 23_7 = 17, a(3) = 623_7 = 311, a(4) = 2623_7 = 997.
Links
- Robert Israel, Table of n, a(n) for n = 0..1182
- Wikipedia, Hensel's Lemma.
Programs
-
Maple
with(padic): R:= [rootp(x^2+5, 7, 100)]: R1:= op(select(t -> ratvaluep(evalp(t, 7, 1))=3, R)): seq(ratvaluep(evalp(R1, 7, n)), n=0..100); # Robert Israel, Aug 13 2017
-
PARI
a(n) = if (n, truncate(sqrt(-5+O(7^(n)))), 0)
Formula
a(0) = 0 and a(1) = 3, a(n) = a(n-1) + (a(n-1)^2 + 5) mod 7^n for n > 1.
Comments