A290807 Number of partitions of n into Pell parts (A000129).
1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 14, 15, 18, 20, 23, 26, 29, 32, 36, 39, 44, 47, 53, 57, 63, 68, 74, 81, 88, 95, 103, 110, 120, 128, 139, 148, 159, 170, 182, 195, 208, 221, 236, 250, 267, 282, 300, 317, 336, 355, 375, 396, 418, 440, 464, 487, 514, 539, 568, 595, 625, 655, 687, 720, 754, 788
Offset: 0
Keywords
Examples
a(5) = 4 because we have [5], [2, 2, 1], [2, 1, 1, 1] and [1, 1, 1, 1, 1].
Links
- Eric Weisstein's World of Mathematics, Pell Number
- Index entries for sequences related to partitions
Programs
-
Mathematica
CoefficientList[Series[Product[1/(1 - x^Fibonacci[k, 2]), {k, 1, 15}], {x, 0, 67}], x]
Formula
G.f.: Product_{k>=1} 1/(1 - x^A000129(k)).