A290810 Numbers k such that 6k-1, 12k-1 and 18k-1 are all primes.
1, 4, 5, 14, 15, 29, 39, 40, 49, 70, 110, 159, 169, 204, 235, 260, 264, 315, 334, 355, 390, 425, 449, 490, 560, 565, 599, 634, 725, 729, 735, 820, 824, 889, 1019, 1029, 1349, 1379, 1419, 1510, 1580, 1590, 1694, 1719, 1765, 1925, 1930, 1950, 1985, 2044, 2150
Offset: 1
Keywords
Examples
1 is in the sequence since 6*1 - 1 = 5, 12*1 - 1 = 11 and 18*1 - 1 = 17 are all primes, and 5*11*17 = 935 is a Lucas-Carmichael number.
Links
- Daniel Starodubtsev, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
seq = {}; Do[ If[ AllTrue[{6 m - 1, 12 m - 1, 18 m - 1}, PrimeQ ], AppendTo[seq, m] ], {m, 1, 10^5} ]; seq
-
PARI
isok(n) = isprime(6*n-1) && isprime(12*n-1) && isprime(18*n-1); \\ Michel Marcus, Aug 11 2017
Formula
6*a(n) - 1 = A067256(n+1).
Comments