A290823 Irregular triangle read by rows: T(n,k) = number of k-irredundant sets in the n X n rook graph.
1, 1, 1, 1, 4, 6, 1, 9, 36, 48, 1, 16, 120, 416, 632, 1, 25, 300, 1900, 6550, 10930, 400, 1, 36, 630, 6240, 37080, 128592, 240192, 39600, 900, 1, 49, 1176, 16660, 149695, 858774, 3064656, 6354866, 2492385, 229320, 1764
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 4, 6; 1, 9, 36, 48; 1, 16, 120, 416, 632; 1, 25, 300, 1900, 6550, 10930, 400; 1, 36, 630, 6240, 37080, 128592, 240192, 39600, 900; ... As polynomials these are 1; 1 + x; 1 + 4*x + 6*x^2; etc.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..846
Crossrefs
Row sums are A290586.
Programs
-
Mathematica
s[n_, k_]:=Sum[(-1)^i*Binomial[n, i] StirlingS2[n - i, k - i], {i, 0, Min[n, k]}]; c[m_, n_, x_]:=Sum[Binomial[m, i] (n^i - n !*StirlingS2[i, n])*x^i, {i, 0, m - 1}]; p[m_, n_, x_]:=Sum[Sum[Binomial[m, k] Binomial[n, r]* k!*s[r, k]*x^r*c[m - k, n - r, x], {r, 2k, n - 1}], {k,0, m - 1}]; a[n_, x_]:=(2*n^n - n !)x^n + p[n, n, x]; A[n_]:=If[n==0, {1}, Drop[Block[{q=a[n, x]}, CoefficientList[q + x^(Exponent[q, x] + 1), x]], -1]]; Table[A[n], {n, 0, 15}] (* Indranil Ghosh, Aug 12 2017, after PARI code *)
-
PARI
\\ see A. Howroyd note in A290586 for explanation s(n,k)=sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) ); c(m,n,x)=sum(i=0, m-1, binomial(m, i) * (n^i - n!*stirling(i, n, 2))*x^i); p(m, n, x)={sum(k=0, m-1, sum(r=2*k, n-1, binomial(m, k) * binomial(n, r) * k! * s(r, k) * x^r * c(m-k, n-r, x) ))} a(n,x) = (2*n^n - n!)*x^n + p(n,n,x); for (n=0,8,my(q=a(n,x));print(Vec(q+O(x^(poldegree(q)+1)) )))
Formula
T(n, 0) = 1.
T(n, 1) = n^2.
T(n, 2) = binomial(n^2, 2).
T(n, 3) = binomial(n^2, 3) - n^2*(n-1)^2.
T(n, 2*n-4) = n^2*(n-1)^2 for n > 4.
Comments