cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290823 Irregular triangle read by rows: T(n,k) = number of k-irredundant sets in the n X n rook graph.

Original entry on oeis.org

1, 1, 1, 1, 4, 6, 1, 9, 36, 48, 1, 16, 120, 416, 632, 1, 25, 300, 1900, 6550, 10930, 400, 1, 36, 630, 6240, 37080, 128592, 240192, 39600, 900, 1, 49, 1176, 16660, 149695, 858774, 3064656, 6354866, 2492385, 229320, 1764
Offset: 0

Views

Author

Andrew Howroyd, Aug 11 2017

Keywords

Comments

For each row, k lies in the range 0..max(n, 2*n-4). The upper limit is the upper irredundance number of the graph.

Examples

			Triangle begins:
1;
1,  1;
1,  4,   6;
1,  9,  36,   48;
1, 16, 120,  416,   632;
1, 25, 300, 1900,  6550,  10930,    400;
1, 36, 630, 6240, 37080, 128592, 240192, 39600, 900;
...
As polynomials these are 1; 1 + x; 1 + 4*x + 6*x^2; etc.
		

Crossrefs

Row sums are A290586.

Programs

  • Mathematica
    s[n_, k_]:=Sum[(-1)^i*Binomial[n, i] StirlingS2[n - i, k - i], {i, 0, Min[n, k]}]; c[m_, n_, x_]:=Sum[Binomial[m, i] (n^i - n !*StirlingS2[i, n])*x^i, {i, 0, m - 1}]; p[m_, n_, x_]:=Sum[Sum[Binomial[m, k] Binomial[n, r]* k!*s[r, k]*x^r*c[m - k, n - r, x], {r, 2k, n - 1}], {k,0, m - 1}]; a[n_, x_]:=(2*n^n - n !)x^n + p[n, n, x]; A[n_]:=If[n==0, {1},  Drop[Block[{q=a[n, x]}, CoefficientList[q + x^(Exponent[q, x] + 1), x]], -1]]; Table[A[n], {n, 0, 15}] (* Indranil Ghosh, Aug 12 2017, after PARI code *)
  • PARI
    \\ see A. Howroyd note in A290586 for explanation
    s(n,k)=sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) );
    c(m,n,x)=sum(i=0, m-1, binomial(m, i) * (n^i - n!*stirling(i, n, 2))*x^i);
    p(m, n, x)={sum(k=0, m-1, sum(r=2*k, n-1, binomial(m, k) * binomial(n, r) * k! * s(r, k) * x^r * c(m-k, n-r, x) ))}
    a(n,x) = (2*n^n - n!)*x^n + p(n,n,x);
    for (n=0,8,my(q=a(n,x));print(Vec(q+O(x^(poldegree(q)+1)) )))

Formula

T(n, 0) = 1.
T(n, 1) = n^2.
T(n, 2) = binomial(n^2, 2).
T(n, 3) = binomial(n^2, 3) - n^2*(n-1)^2.
T(n, 2*n-4) = n^2*(n-1)^2 for n > 4.