cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290842 Numbers k such that the sum of digits of k^3 is 3^3 = 27.

Original entry on oeis.org

27, 33, 36, 39, 42, 54, 57, 69, 72, 75, 78, 84, 87, 93, 105, 108, 111, 114, 135, 138, 147, 162, 165, 168, 174, 177, 219, 222, 225, 228, 231, 234, 258, 267, 270, 273, 276, 285, 291, 294, 312, 318, 321, 330, 342, 345, 348, 351, 360, 369, 381, 384, 390, 405, 417
Offset: 1

Views

Author

Seiichi Manyama, Aug 12 2017

Keywords

Comments

It is obvious that if k is in this sequence, then so is 10*k. Additionally, this sequence contains other infinite subsequences. For example, 10^(2*k) + 10^k + 1 is in this sequence for all k > 0. - Altug Alkan, Aug 12 2017

Examples

			27^3 = 19683, 1 + 9 + 6 + 8 + 3 = 27 = 3^3.
		

Crossrefs

Numbers k such that sum of digits of k^3 is m^3: A107679 (m=2), this sequence (m=3), A290843 (m=4), A159462 (m=5), A159463 (m=6).
Cf. A067075.

Programs

  • PARI
    isok(n) = sumdigits(n^3) == 27; \\ Altug Alkan, Aug 12 2017