A290845 a(1) = 1; a(n) = Sum_{k=1..n} a(ceiling((n-1)/k)).
1, 2, 4, 8, 14, 24, 36, 56, 78, 110, 148, 200, 254, 334, 416, 522, 644, 798, 954, 1162, 1372, 1640, 1934, 2284, 2636, 3090, 3556, 4106, 4694, 5394, 6096, 6972, 7850, 8882, 9972, 11220, 12500, 14048, 15598, 17360, 19208, 21346, 23486, 26016, 28548, 31436, 34478, 37874, 41272, 45246
Offset: 1
Keywords
Examples
a(1) = 1; a(2) = a(ceiling(1/1)) + a(ceiling(1/2)) = a(1) + a(1) = 2; a(3) = a(ceiling(2/1)) + a(ceiling(2/2)) + a(ceiling(2/3)) = a(2) + a(1) + a(1) = 4, etc.
Programs
-
Mathematica
a[1] = 1; a[n_] := a[n] = Sum[a[Ceiling[(n - 1)/k]], {k, 1, n}]; Table[a[n], {n, 50}]
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A290845(n): if n == 1: return 1 c, j, k1 = n, 1, n-2 while k1 > 1: j2 = (n-2)//k1 + 1 c += (j2-j)*A290845(k1+1)>>1 j, k1 = j2, (n-2)//j2 return c-j<<1 # Chai Wah Wu, Apr 29 2025
Formula
a(n) = 2*A003318(n-1) for n > 1.