A290870 a(n) is the number of ways to represent n as n = x*y + y*z + z*x where 0 < x < y < z.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 2, 0, 0, 2, 1, 0, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 2, 0, 3, 0, 1, 3, 0, 1, 4, 0, 1, 2, 2, 1, 2, 2, 2, 3, 0, 0, 5, 0, 2, 3, 2, 1, 2, 2, 1, 4, 2, 0, 6, 0, 1, 4, 2, 3, 2, 0, 4, 3, 2, 1, 5, 2, 0, 4, 4, 0, 5, 2, 2, 4, 0, 3, 6, 2, 1, 3, 3, 1
Offset: 1
Keywords
Examples
For (x, y, z) = (1, 3, 5), we have x * y + y * z + z * x = 1 * 3 + 3 * 5 + 5 * 1 = 23 and similarily for (x, y, z) = (1, 2, 7), we have x * y + y * z + z * x = 23. Those 2 triples are all for n=23, so a(23) = 2. - _David A. Corneth_, Oct 01 2017
Links
- Joerg Arndt, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
N=10^3; V=vector(N); { for (x=1, N, for (y=x+1, N, t=x*y; if( t > N, break() ); for (z=y+1, N, tt = t + y*z + z*x; if( tt > N, break() ); V[tt]+=1; ); ); ); } V \\ Joerg Arndt, Oct 01 2017
-
PARI
a(n) = {my(res = 0); for(x = 1, sqrtint(n\3), for(y = x + 1, (n - x^2) \ (2 * x), z = (n - x*y) / (x + y); if(z > y && z == z\1, res++))); res} \\ David A. Corneth, Oct 01 2017
Formula
For the triples (x,y,z) we have x < sqrt(n / 3), y < (n - x^2) / (2 * x), z = (n - x*y) / (x + y) which must be integer. - David A. Corneth, Oct 01 2017
Comments