A290880
E.g.f. C(x) satisfies: C(x)^2 - S(x)^2 = 1 and C'(x)^2 + S'(x)^2 = 1, where S(x) is the e.g.f. of A290881.
Original entry on oeis.org
1, 1, -7, 265, -24175, 4037425, -1070526775, 412826556025, -218150106913375, 151297155973926625, -133288452772763494375, 145378048431548466795625, -192296944484564858674279375, 303266384253858232005535140625, -562167814015907092875287424484375, 1210147640238238850996978598797265625, -2993757681527630470101347134338702109375
Offset: 0
E.g.f.: C(x) = 1 + x^2/2! - 7*x^4/4! + 265*x^6/6! - 24175*x^8/8! + 4037425*x^10/10! - 1070526775*x^12/12! + 412826556025*x^14/14! - 218150106913375*x^16/16! + 151297155973926625*x^18/18! - 133288452772763494375*x^20/20! +...
such that C(x)^2 - S(x)^2 = 1 where S(x) begins:
S(x) = x - x^3/3! + 25*x^5/5! - 1705*x^7/7! + 227665*x^9/9! - 50333425*x^11/11! + 16655398825*x^13/13! - 7711225809625*x^15/15! + 4760499335502625*x^17/17! - 3779764853639958625*x^19/19! + 3752942823715824285625*x^21/21! +...
-
{a(n) = my(C=1,S=x); for(i=1,n, C = 1 + intformal( S/sqrt(C^2 + S^2 + O(x^(2*n+2))) ); S = intformal( C/sqrt(C^2 + S^2)) ); (2*n)!*polcoeff(C,2*n)}
for(n=0,20, print1(a(n),", "))
-
{a(n) = my(C=1); C = cosh( serreverse( intformal( sqrt(cosh(2*x + O(x^(2*n+2)))) ) )); (2*n)!*polcoeff(C,2*n)}
for(n=0,20, print1(a(n),", "))
A290881
E.g.f. S(x) satisfies: C(x)^2 - S(x)^2 = 1 and C'(x)^2 + S'(x)^2 = 1, where C(x) is the e.g.f. of A290880.
Original entry on oeis.org
1, -1, 25, -1705, 227665, -50333425, 16655398825, -7711225809625, 4760499335502625, -3779764853639958625, 3752942823715824285625, -4556465805050372544735625, 6641455313355871353308640625, -11445605320939175012746492140625, 23021828780691053491298409381015625, -53450977127256739279274500814544765625
Offset: 1
E.g.f.: S(x) = x - x^3/3! + 25*x^5/5! - 1705*x^7/7! + 227665*x^9/9! - 50333425*x^11/11! + 16655398825*x^13/13! - 7711225809625*x^15/15! + 4760499335502625*x^17/17! - 3779764853639958625*x^19/19! + 3752942823715824285625*x^21/21! +...
such that C(x)^2 - S(x)^2 = 1 where C(x) begins:
C(x) = 1 + x^2/2! - 7*x^4/4! + 265*x^6/6! - 24175*x^8/8! + 4037425*x^10/10! - 1070526775*x^12/12! + 412826556025*x^14/14! - 218150106913375*x^16/16! + 151297155973926625*x^18/18! - 133288452772763494375*x^20/20! +...
-
{a(n) = my(C=1,S=x); for(i=1,n, C = 1 + intformal( S/sqrt(C^2 + S^2 + O(x^(2*n+2))) ); S = intformal( C/sqrt(C^2 + S^2)) ); (2*n-1)!*polcoeff(S,2*n-1)}
for(n=1,20, print1(a(n),", "))
-
{a(n) = my(C=1); S = serreverse( intformal( sqrt( (1+2*x^2) / (1+x^2 + O(x^(2*n+2))) ) )); (2*n-1)!*polcoeff(S,2*n-1)}
for(n=1,20, print1(a(n),", "))
-
{a(n) = my(S=x); S = sinh( serreverse( intformal( sqrt(cosh(2*x + O(x^(2*n+2)))) ) )); (2*n-1)!*polcoeff(S,2*n-1)}
for(n=1,20, print1(a(n),", "))
A290882
E.g.f. E(x) = C(x) + S(x) such that C(x)^2 - S(x)^2 = 1 and C'(x)^2 + S'(x)^2 = 1, where C(x) is the e.g.f. of A290880 and S(x) is the e.g.f. of A290881.
Original entry on oeis.org
1, 1, 1, -1, -7, 25, 265, -1705, -24175, 227665, 4037425, -50333425, -1070526775, 16655398825, 412826556025, -7711225809625, -218150106913375, 4760499335502625, 151297155973926625, -3779764853639958625, -133288452772763494375, 3752942823715824285625, 145378048431548466795625, -4556465805050372544735625, -192296944484564858674279375, 6641455313355871353308640625
Offset: 0
E.g.f.: E(x) = 1 + x + x^2/2! - x^3/3! - 7*x^4/4! + 25*x^5/5! + 265*x^6/6! - 1705*x^7/7! - 24175*x^8/8! + 227665*x^9/9! + 4037425*x^10/10! - 50333425*x^11/11! - 1070526775*x^12/12! + 16655398825*x^13/13! + 412826556025*x^14/14! - 7711225809625*x^15/15! - 218150106913375*x^16/16! +...
such that E(x) = C(x) + S(x) where
S(x) = x - x^3/3! + 25*x^5/5! - 1705*x^7/7! + 227665*x^9/9! - 50333425*x^11/11! + 16655398825*x^13/13! - 7711225809625*x^15/15! + 4760499335502625*x^17/17! - 3779764853639958625*x^19/19! + 3752942823715824285625*x^21/21! +...
C(x) = 1 + x^2/2! - 7*x^4/4! + 265*x^6/6! - 24175*x^8/8! + 4037425*x^10/10! - 1070526775*x^12/12! + 412826556025*x^14/14! - 218150106913375*x^16/16! + 151297155973926625*x^18/18! - 133288452772763494375*x^20/20! +...
These series satisfy: C(x)^2 - S(x)^2 = 1 and C'(x)^2 + S'(x)^2 = 1.
-
{a(n) = my(C=1,S=x); for(i=1,n, C = 1 + intformal( S/sqrt(C^2 + S^2 + O(x^(n+2))) ); S = intformal( C/sqrt(C^2 + S^2)) ); n!*polcoeff(C + S,n)}
for(n=0,30, print1(a(n),", "))
-
{a(n) = my(E=1); E = exp( serreverse( intformal( sqrt(cosh(2*x + O(x^(n+2)))) ) )); n!*polcoeff(E,n)}
for(n=0,30, print1(a(n),", "))
A290883
E.g.f. A(x) = sqrt(C(x)^2 + S(x)^2) such that C(x)^2 - S(x)^2 = 1 and C'(x)^2 + S'(x)^2 = 1, where C(x) is the e.g.f. of A290880 and S(x) is the e.g.f. of A290881.
Original entry on oeis.org
1, 2, -20, 920, -95600, 17588000, -5034785600, 2068322672000, -1153339941728000, 838147215114560000, -769492266756037760000, 870869784123573927680000, -1191080747725445120960000000, 1936606018449416970940544000000, -3692030834904045806243452160000000, 8156631422332715861303860160000000000, -20671774666617006397027638099614720000000
Offset: 0
E.g.f.: A(x) = 1 + 2*x^2/2! - 20*x^4/4! + 920*x^6/6! - 95600*x^8/8! + 17588000*x^10/10! - 5034785600*x^12/12! + 2068322672000*x^14/14! - 1153339941728000*x^16/16! + 838147215114560000*x^18/18! +...
such that A(x) = sqrt(C(x)^2 + S(x)^2) where series C(x) and S(x) begin:
S(x) = x - x^3/3! + 25*x^5/5! - 1705*x^7/7! + 227665*x^9/9! - 50333425*x^11/11! + 16655398825*x^13/13! - 7711225809625*x^15/15! + 4760499335502625*x^17/17! - 3779764853639958625*x^19/19! + 3752942823715824285625*x^21/21! +...
C(x) = 1 + x^2/2! - 7*x^4/4! + 265*x^6/6! - 24175*x^8/8! + 4037425*x^10/10! - 1070526775*x^12/12! + 412826556025*x^14/14! - 218150106913375*x^16/16! + 151297155973926625*x^18/18! - 133288452772763494375*x^20/20! +...
These series satisfy: C(x)^2 - S(x)^2 = 1 and C'(x)^2 + S'(x)^2 = 1.
-
{a(n) = my(C=1,S=x); for(i=1,n, C = 1 + intformal( S/sqrt(C^2 + S^2 + O(x^(n+2))) ); S = intformal( C/sqrt(C^2 + S^2)) ); n!*polcoeff(C + S,n)}
for(n=0,30, print1(a(n),", "))
-
{a(n) = my(E=1); A = sqrt( cosh( 2*serreverse( intformal( sqrt(cosh(2*x + O(x^(2*n+2)))) ) ))); (2*n)!*polcoeff(A,2*n)}
for(n=0,30, print1(a(n),", "))
Showing 1-4 of 4 results.
Comments