A355227 Irregular triangle read by rows where T(n,k) is the number of independent sets of size k in the n-folded cube graph.
1, 2, 1, 4, 1, 8, 12, 8, 2, 1, 16, 80, 160, 120, 16, 1, 32, 400, 2560, 9280, 20256, 28960, 31520, 29880, 24320, 16336, 8768, 3640, 1120, 240, 32, 2, 1, 64, 1792, 29120, 307440, 2239552, 11682944, 44769920, 128380880, 279211520, 464621248, 593908224, 582529360, 435648640, 245610720, 102886976, 31658620, 7189056, 1239840, 165760, 17584, 1408, 64
Offset: 2
Examples
Triangle begins: k = 1 2 3 4 5 6 n = 2: 1, 2 n = 3: 1, 4 n = 4: 1, 8, 12, 8, 2 n = 5: 1, 16, 80, 160, 120, 16 The 5-folded cube graph has independence polynomial 1 + 16*t + 80*t^2 + 160*t^3 + 120*t^4 + 16*t^5.
Links
- Eric Weisstein's World of Mathematics, Independence polynomial
- Eric Weisstein's World of Mathematics, Folded cube graph
Programs
-
Sage
from sage.graphs.independent_sets import IndependentSets def row(n): g = graphs.FoldedCubeGraph(n) if n % 2 == 0: setCounts = [0] * (pow(2, n-2) + 1) else: size = int(pow(2, n-2) - 1/4 * (1-pow(-1,n)) * math.comb(n-1, 1/2 * (n-1)) + 1) setCounts = [0] * size for Iset in IndependentSets(g): setCounts[len(Iset)] += 1 return setCounts
Comments