A290914 a(n) = (1/7)*A290913(n).
0, 1, 4, 17, 76, 336, 1484, 6559, 28988, 128111, 566184, 2502240, 11058600, 48873265, 215994436, 954583169, 4218761572, 18644733936, 82400035556, 364165339279, 1609421566844, 7112807014943, 31434910948176, 138925971735744, 613980604384080, 2713475226049825
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4, 1, 4, -1)
Programs
-
Mathematica
z = 60; s = x/(1 - x)^2; p = 1 - 7 s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *) u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290913 *) u/7 (* A290914 *) LinearRecurrence[{4,1,4,-1},{0,1,4,17},30] (* Harvey P. Dale, May 05 2019 *)
Formula
G.f.: x/(1 - 4 x - x^2 - 4 x^3 + x^4).
a(n) = 4*a(n-1) + a(n-2) + 4*a(n-3) - a(n-4).
a(n) = (1/7)*A290913(n) for n >= 0.