A290922 p-INVERT of the positive integers, where p(S) = 1 - S - 2*S^2.
1, 5, 20, 75, 279, 1040, 3881, 14485, 54060, 201755, 752959, 2810080, 10487361, 39139365, 146070100, 545141035, 2034494039, 7592835120, 28336846441, 105754550645, 394681356140, 1472970873915, 5497202139519, 20515837684160, 76566148597121, 285748756704325
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5, -6, 5, -1)
Programs
-
Magma
I:=[1,5,20,75]; [n le 4 select I[n] else 5*Self(n-1)- 6*Self(n-2)+5*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Aug 19 2017
-
Mathematica
z = 60; s = x/(1 - x)^2; p = 1 - s - 2 s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290922 *) LinearRecurrence[{5, -6, 5, -1}, {1, 5, 20, 75}, 30] (* Vincenzo Librandi, Aug 19 2017 *)
Formula
G.f.: (1 + x^2)/(1 - 5 x + 6 x^2 - 5 x^3 + x^4).
a(n) = 5*a(n-1) - 6*a(n-2) + 5*a(n-3) - a(n-4).
Comments