A290928 p-INVERT of the positive integers, where p(S) = (1 - S^3)^2.
0, 0, 2, 12, 42, 115, 288, 738, 2020, 5751, 16362, 45697, 125538, 342318, 933050, 2547630, 6960042, 18990309, 51699042, 140439411, 380871538, 1031705466, 2792009100, 7548723827, 20389716864, 55020917232, 148334534420, 399562167420, 1075432476492
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (12,-66,222,-507,822,-965,822,-507,222,-66,12,-1)
Programs
-
Mathematica
z = 60; s = x/(1 - x)^2; p = (1 - s^3)^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290928 *) LinearRecurrence[{12, -66, 222, -507, 822, -965, 822, -507, 222, -66, 12, -1}, {0, 0, 2, 12, 42, 115, 288, 738, 2020, 5751, 16362, 45697}, 40] (* Vincenzo Librandi, Aug 20 2017 *)
-
PARI
concat(vector(2), Vec(x^2*(2 - 12*x + 30*x^2 - 41*x^3 + 30*x^4 - 12*x^5 + 2*x^6) / ((1 - 3*x + x^2)^2*(1 - 3*x + 5*x^2 - 3*x^3 + x^4)^2) + O(x^30))) \\ Colin Barker, Aug 19 2017
Formula
a(n) = 12*a(n-1) - 66*a(n-2) + 222*a(n-3) - 507*a(n-4) + 822*a(n-5) - 965*a(n-6) + 822*a(n-7) - 507*a(n-8) + 222*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12).
G.f.: x^2*(2 - 12*x + 30*x^2 - 41*x^3 + 30*x^4 - 12*x^5 + 2*x^6) / ((1 - 3*x + x^2)^2*(1 - 3*x + 5*x^2 - 3*x^3 + x^4)^2). - Colin Barker, Aug 19 2017
Comments