A290939 Number of 5-cycles in the n-triangular graph.
0, 0, 24, 312, 1584, 5376, 14448, 33264, 68544, 129888, 230472, 387816, 624624, 969696, 1458912, 2136288, 3055104, 4279104, 5883768, 7957656, 10603824, 13941312, 18106704, 23255760, 29565120, 37234080, 46486440, 57572424, 70770672, 86390304, 104773056, 126295488
Offset: 2
Links
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Johnson Graph
- Eric Weisstein's World of Mathematics, Triangular Graph
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Programs
-
Mathematica
Table[12/5 Binomial[n, 4] (n^2 + 7 n - 34), {n, 2, 20}] LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 24, 312, 1584, 5376, 14448}, 20] CoefficientList[Series[(24 (-x^2 - 6 x^3 + 4 x^4))/(-1 + x)^7, {x, 0, 20}], x]
-
PARI
a(n)=12*binomial(n, 4)*(n^2+7*n-34)/5 \\ Charles R Greathouse IV, Aug 14 2017
Formula
a(n) = 12/5 * binomial(n, 4) * (n^2 + 7*n - 34).
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: (24 x^2 (-x^2 - 6 x^3 + 4 x^4))/(-1 + x)^7.