cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290940 Number of 6-cycles in the n-triangular graph.

Original entry on oeis.org

0, 0, 16, 920, 7800, 36260, 122080, 334656, 794640, 1696200, 3334320, 6137560, 10706696, 17859660, 28683200, 44591680, 67393440, 99365136, 143334480, 202771800, 281890840, 385759220, 520418976, 693017600, 911950000, 1187011800, 1529564400, 1952712216, 2471492520
Offset: 2

Views

Author

Eric W. Weisstein, Aug 14 2017

Keywords

Crossrefs

Cf. A002417 (3-cycles), A151974 (4-cycles), A290939 (5-cycles).

Programs

  • Mathematica
    Table[2 Binomial[n, 4] (n^3 + 27 n^2 - 220 n + 392), {n, 2, 20}]
    LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 16, 920, 7800, 36260, 122080, 334656}, 20]
    CoefficientList[Series[-((4 (-4 x^2 - 198 x^3 - 222 x^4 + 319 x^5))/(-1 + x)^8), {x, 0, 20}], x]

Formula

a(n) = 2*binomial(n, 4) (n^3 + 27*n^2 - 220*n + 392).
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
G.f.: -((4*x^2 (-4*x^2 - 198*x^3 - 222*x^4 + 319*x^5))/(-1 + x)^8).