A290940 Number of 6-cycles in the n-triangular graph.
0, 0, 16, 920, 7800, 36260, 122080, 334656, 794640, 1696200, 3334320, 6137560, 10706696, 17859660, 28683200, 44591680, 67393440, 99365136, 143334480, 202771800, 281890840, 385759220, 520418976, 693017600, 911950000, 1187011800, 1529564400, 1952712216, 2471492520
Offset: 2
Links
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Johnson Graph
- Eric Weisstein's World of Mathematics, Triangular Graph
- Index entries for linear recurrences with constant coefficients, signature (8, -28, 56, -70, 56, -28, 8, -1).
Programs
-
Mathematica
Table[2 Binomial[n, 4] (n^3 + 27 n^2 - 220 n + 392), {n, 2, 20}] LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 16, 920, 7800, 36260, 122080, 334656}, 20] CoefficientList[Series[-((4 (-4 x^2 - 198 x^3 - 222 x^4 + 319 x^5))/(-1 + x)^8), {x, 0, 20}], x]
Formula
a(n) = 2*binomial(n, 4) (n^3 + 27*n^2 - 220*n + 392).
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
G.f.: -((4*x^2 (-4*x^2 - 198*x^3 - 222*x^4 + 319*x^5))/(-1 + x)^8).