A290961 Number of endofunctions on [n] such that the LCM of their cycle lengths equals n.
1, 1, 2, 6, 24, 840, 720, 5040, 40320, 59814720, 3628800, 83701537920, 479001600, 26980643289600, 2642646473026560, 1307674368000, 20922789888000, 41837259585747225600, 6402373705728000, 598354114828973074790400, 18160977780223038067507200
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..389
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, x^m, add((j-1)!* b(n-j, ilcm(m, j))*binomial(n-1, j-1), j=1..n)) end: a:= n-> add(coeff(b(j, 1), x, n)*n^(n-j)*binomial(n-1, j-1), j=0..n): seq(a(n), n=1..25);
-
Mathematica
b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[(j - 1)!* b[n - j, LCM[m, j]]*Binomial[n - 1, j - 1], {j, 1, n}]]; a[n_] := Sum[Coefficient[b[j, 1], x, n]*n^(n-j)*Binomial[n-1, j-1], {j, 0, n}]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Mar 07 2022, after Alois P. Heinz *)
Formula
a(n) = A222029(n,n).