A290962 Numbers k such that (13*10^k - 43)/3 is prime.
1, 2, 4, 5, 8, 12, 55, 125, 136, 221, 224, 668, 1254, 2639, 4745, 5888, 8526, 9139, 13771, 17936, 27713, 38668, 44680, 73891, 135184, 200610, 215592, 247793, 258710, 291721
Offset: 1
Examples
2 is in this sequence because (13*10^2 - 43)/3 = 419 is prime. Initial terms and associated primes: a(1) = 1, 29; a(2) = 2, 419; a(3) = 4, 43319; a(4) = 5; 433319; a(5) = 8, 433333319; etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 43w19.
Programs
-
Mathematica
Select[Range[1, 100000], PrimeQ[(13*10^# - 43)/3] &]
-
PARI
isok(n) = ispseudoprime((13*10^n - 43)/3) \\ Altug Alkan, Aug 15 2017
Extensions
a(25) from Robert Price, Nov 28 2018
a(26)-a(30) from Robert Price, Oct 26 2023
Comments