A290964 Numbers k such that (35*10^k - 593)/9 is prime.
3, 5, 6, 14, 24, 84, 87, 207, 734, 797, 1743, 2211, 3539, 5871, 5949, 6954, 8309, 10896, 12771, 22382, 35112, 38267, 69866, 121229, 125754, 133979
Offset: 1
Examples
5 is in this sequence because (35*10^5 - 593)/9 = 388823 is prime. Initial terms and associated primes: a(1) = 3, 3823; a(2) = 5, 388823; a(3) = 6, 3888823; a(4) = 14; 388888888888823; a(5) = 24, 3888888888888888888888823; etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 38w23.
Programs
-
Mathematica
Select[Range[2, 100000], PrimeQ[(35*10^# - 593)/9] &]
-
PARI
isok(n) = ispseudoprime((35*10^n - 593)/9) \\ Altug Alkan, Aug 15 2017
Extensions
a(24)-a(26) from Robert Price, Jul 18 2018
Comments