cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290966 The number of convex layers in an n X n grid of points.

Original entry on oeis.org

1, 1, 3, 3, 6, 6, 9, 9, 12, 12, 15, 15, 19, 19, 23, 23, 27, 27, 31, 31, 35, 35, 40, 40, 45, 45, 50, 50, 55, 55, 60, 60, 65, 65, 70, 70, 75, 75, 80, 80, 85, 85, 90, 90, 95, 95, 100, 100, 105, 105, 110, 110, 116, 116, 122, 122, 129, 129, 135, 135
Offset: 1

Views

Author

David Eppstein, Aug 15 2017

Keywords

Comments

The convex layers of a point set are obtained by finding the convex hull, removing its vertices, and continuing recursively with the remaining points.
As can be seen in the subsequence 122, 129, 129, 135, the nonzero differences of consecutive sequence values do not grow monotonically.

Examples

			For n=3, the a(3)=3 convex layers of a 3 X 3 grid are (1) the four corner points, (2) the four side midpoints, and (3) the center point.
		

Crossrefs

Cf. A293596.

Formula

For every n, a(2n) = a(2n-1).
As Har-Peled and Lidicky (2013) proved, this sequence grows proportionally to n^{4/3}.