cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290972 Primes p such that the sum of the squares of digits of p equals the sum of digits of p^2.

Original entry on oeis.org

2, 3, 3331, 3433, 11243, 13241, 21523, 22153, 22531, 31541, 32141, 32411, 33203, 34033, 34141, 34211, 35141, 41341, 41413, 42131, 43411, 44131, 51341, 51413, 52321, 54311, 102253, 102523, 104231, 104513, 110543, 111263, 111623, 112163
Offset: 1

Views

Author

K. D. Bajpai, Aug 16 2017

Keywords

Comments

214007 is the smallest term that is in A017353 and 31111009 is the smallest term that is in A017377. - Altug Alkan, Aug 16 2017

Examples

			a(3) = 3331 is prime: [3^2 + 3^2 + 3^2 + 1^2 = 9 + 9 + 9 + 1] = 28; [3331^2 = 11095561, 1 + 1 + 0 + 9 + 5 + 5 + 1] = 28.
a(5) = 11243 is prime: [1^2 + 1^2 + 2^2 + 4^2 + 3^2 = 1 + 1 + 4 + 16 + 9] = 31: [11243^2 = 126405049;1 + 2 + 6 + 4 + 0 + 5 + 0 + 4 + 9] = 31.
		

Crossrefs

Intersection of A000040 and A165550.
Cf. A123157.

Programs

  • Maple
    filter:= t -> convert(map(`^`,convert(t,base,10),2),`+`) = convert(convert(t^2,base,10),`+`) and isprime(t):
    select(filter, [2,seq(i,i=3..200000,2)]); # Robert Israel, Aug 16 2017
  • Mathematica
    Select[Prime[Range[20000]], Plus @@ IntegerDigits[#^2] == Total[IntegerDigits[#]^2] &]
  • PARI
    forprime(p=1, 30000, v=digits(p); if(sum(i=1, length(v), v[i]^2) == sumdigits(p^2), print1(p", ")));