A290994 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S^7.
0, 0, 0, 0, 0, 0, 1, 7, 28, 84, 210, 462, 924, 1717, 3017, 5110, 8568, 14756, 27132, 54264, 116281, 257775, 572264, 1246784, 2641366, 5430530, 10861060, 21242341, 40927033, 78354346, 150402700, 291693136, 574274008, 1148548016, 2326683921, 4749439975
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,2).
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 60); [0,0,0,0,0,0] cat Coefficients(R!( x^6/((1-x)^7 - x^7) )); // G. C. Greubel, Apr 11 2023 -
Mathematica
z = 60; s = x/(1 - x); p = 1 - s^7; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290994 *)
-
PARI
concat(vector(6), Vec(x^6 / ((1 - 2*x)*(1 - 5*x + 11*x^2 - 13*x^3 + 9*x^4 - 3*x^5 + x^6)) + O(x^50))) \\ Colin Barker, Aug 22 2017
-
SageMath
def A290994_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x^6/((1-x)^7 - x^7) ).list() A290994_list(60) # G. C. Greubel, Apr 11 2023
Formula
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + 2*a(n-7) for n >= 8.
G.f.: x^6 / ((1 - 2*x)*(1 - 5*x + 11*x^2 - 13*x^3 + 9*x^4 - 3*x^5 + x^6)). - Colin Barker, Aug 22 2017
a(n) = A049017(n-6) for n > 5. - Georg Fischer, Oct 23 2018
G.f.: x^6/((1-x)^7 - x^7). - G. C. Greubel, Apr 11 2023
Comments