A291001 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - 8*S^2.
0, 8, 16, 88, 288, 1192, 4400, 17144, 65088, 250184, 955984, 3663256, 14018400, 53679592, 205487984, 786733112, 3011882112, 11530896008, 44144966800, 169006205656, 647027178912, 2477097797416, 9483385847216, 36306456276344, 138996613483200, 532138420900808
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,7).
Programs
-
Magma
[n le 2 select 8*(n-1) else 2*Self(n-1) +7*Self(n-2): n in [1..41]]; // G. C. Greubel, Apr 25 2023
-
Mathematica
z = 60; s = x/(1 - x); p = 1 - s^8; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291001 *) LinearRecurrence[{2,7}, {0,8}, 41] (* G. C. Greubel, Apr 25 2023 *)
-
SageMath
A291001=BinaryRecurrenceSequence(2,7,0,8) [A291001(n) for n in range(41)] # G. C. Greubel, Apr 25 2023
Formula
G.f.: 8*x/(1 - 2*x - 7*x^2).
a(n) = 2*a(n-1) + 7*a(n-2) for n >= 3.
a(n) = 8*A015519(n).
a(n) = sqrt(2)*((1+2*sqrt(2))^n - (1-2*sqrt(2))^n). - Colin Barker, Aug 23 2017
Comments