cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A291337 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - 2 S - 2 S^3.

Original entry on oeis.org

1, 3, 10, 34, 115, 387, 1300, 4366, 14665, 49263, 165490, 555934, 1867555, 6273687, 21075220, 70798066, 237832225, 798950763, 2683918570, 9016098634, 30287816995, 101745987387, 341795711140, 1148195728966, 3857138603785, 12957301471863, 43527515777650
Offset: 0

Views

Author

Clark Kimberling, Aug 23 2017

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-2*x+2*x^2)/(1-5*x+7*x^2-5*x^3) )); // G. C. Greubel, Jun 01 2023
    
  • Mathematica
    z = 60; s = 1 - 2 s - 2 s^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291005 *)
    u / 2  (* A291337 *)
  • SageMath
    def A291337_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-2*x+2*x^2)/(1-5*x+7*x^2-5*x^3) ).list()
    A291337_list(30) # G. C. Greubel, Jun 01 2023

Formula

G.f.: (1 - 2*x + 2*x^2)/(1 - 5*x + 7*x^2 - 5*x^3).
a(n) = 5*a(n-1) - 7*a(n-2) + 5*a(n-3) for n >= 4.
a(n) = (1/2)*A291005(n).
Showing 1-1 of 1 results.