A291006 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S - S^2 - S^3 - S^4.
1, 3, 9, 27, 80, 235, 688, 2013, 5891, 17244, 50482, 147791, 432672, 1266680, 3708288, 10856241, 31782309, 93044665, 272394011, 797450348, 2334585333, 6834643282, 20008841823, 58577124509, 171488162320, 502042223184, 1469759722591, 4302812676894
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..999
- Index entries for linear recurrences with constant coefficients, signature (5,-8,6,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-2*x+2*x^2)/(1-5*x+8*x^2-6*x^3+x^4) )); // G. C. Greubel, Jun 01 2023 -
Mathematica
z = 60; s = x/(1 - x); p = 1 - s - s^2 - s^3 - s^4; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291006 *) LinearRecurrence[{5,-8,6,-1}, {1,3,9,27}, 41] (* G. C. Greubel, Jun 01 2023 *)
-
SageMath
def A291006_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1-2*x+2*x^2)/(1-5*x+8*x^2-6*x^3+x^4) ).list() A291006_list(40) # G. C. Greubel, Jun 01 2023
Formula
G.f.: (1 - 2*x + 2*x^2)/(1 - 5*x + 8*x^2 - 6*x^3 + x^4).
a(n) = 5*a(n-1) - 8*a(n-2) + 6*a(n-3) - a(n-4) for n >= 4.
Comments