A291008 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - 7*S^2.
0, 7, 14, 70, 224, 868, 3080, 11368, 41216, 150640, 548576, 2000992, 7293440, 26592832, 96946304, 353449600, 1288577024, 4697851648, 17127165440, 62441440768, 227645874176, 829940392960, 3025756030976, 11031154419712, 40216845025280, 146620616568832
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,6).
Programs
-
Magma
[n le 2 select 7*(n-1) else 2*Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 01 2023
-
Mathematica
z = 60; s = x/(1 - x); p = 1 - s^7; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291008 *) LinearRecurrence[{2,6}, {0,7}, 40] (* G. C. Greubel, Jun 01 2023 *)
-
SageMath
A291008=BinaryRecurrenceSequence(2,6,0,7) [A291008(n) for n in range(41)] # G. C. Greubel, Jun 01 2023
Formula
G.f.: 7*x/(1 - 2*x - 6*x^2).
a(n) = 2*a(n-1) + 6*a(n-2) for n >= 3.
a(n) = 7*A083099(n).
a(n) = (sqrt(7)*((1+sqrt(7))^n - (1-sqrt(7))^n)) / 2. - Colin Barker, Aug 23 2017
a(n) = 7*i^(n-1)*6^((n-1)/2)*ChebyshevU(n-1, -i/sqrt(6)). - G. C. Greubel, Jun 01 2023
Comments