A291009 p-INVERT of (1,1,1,1,1,...), where p(S) = (1 - S)*(1 - 3*S).
4, 17, 70, 284, 1144, 4592, 18400, 73664, 294784, 1179392, 4718080, 18873344, 75495424, 301985792, 1207951360, 4831821824, 19327320064, 77309345792, 309237514240, 1236950319104, 4947801800704, 19791208251392, 79164835102720, 316659344605184, 1266637386809344
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-8).
Programs
-
Magma
[2^(n-1)*(9*2^n -1): n in [0..40]]; // G. C. Greubel, Jun 04 2023
-
Mathematica
z = 60; s = x/(1-x); p = (1-s)(1-3s); Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291009 *) LinearRecurrence[{6,-8}, {4,17}, 40] (* G. C. Greubel, Jun 04 2023 *)
-
PARI
Vec((4-7*x)/((1-2*x)*(1-4*x)) + O(x^30)) \\ Colin Barker, Aug 23 2017
-
SageMath
A291009=BinaryRecurrenceSequence(6,-8,4,17) [A291009(n) for n in range(41)] # G. C. Greubel, Jun 04 2023
Formula
a(n) = 6*a(n-1) - 8*a(n-2) for n >= 3.
From Colin Barker, Aug 23 2017: (Start)
G.f.: (4 - 7*x) / ((1 - 2*x)*(1 - 4*x)).
a(n) = 2^(n-1) * (9*2^n - 1).
(End)
Comments