cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291012 p-INVERT of (1,1,1,1,1,...), where p(S) = (1 - S^2)*(1 - 2*S).

Original entry on oeis.org

2, 7, 22, 68, 208, 632, 1912, 5768, 17368, 52232, 156952, 471368, 1415128, 4247432, 12746392, 38247368, 114758488, 344308232, 1032990232, 3099101768, 9297567448, 27893226632, 83680728472, 251044282568, 753137042008, 2259419514632, 6778275321112
Offset: 0

Views

Author

Clark Kimberling, Aug 23 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.

Crossrefs

Programs

  • Magma
    [2] cat [8*3^(n-1) - 2^(n-1): n in [1..40]]; // G. C. Greubel, Jun 04 2023
    
  • Mathematica
    z = 60; s = x/(1-x); p = (1-s)^2(1-2s);
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* this sequence *)
    LinearRecurrence[{5,-6}, {2,7,22}, 40] (* G. C. Greubel, Jun 04 2023 *)
  • PARI
    Vec((2 -3*x -x^2)/((1-2*x)*(1-3*x)) + O(x^30)) \\ Colin Barker, Aug 23 2017
    
  • SageMath
    [8*3^(n-1) - 2^(n-1) - int(n==0)/6 for n in range(41)] # G. C. Greubel, Jun 04 2023

Formula

G.f.: (2 - 3 x - x^2)/(1 - 5*x + 6*x^2).
a(n) = 5*a(n-1) - 6*a(n-2) for n >= 4.
a(n) = (16*3^n - 3*2^n) / 6 for n > 0. - Colin Barker, Aug 23 2017
E.g.f.: (1/6)*(-1 - 3*exp(2*x) + 16*exp(3*x)). - G. C. Greubel, Jun 04 2023