A291013 p-INVERT of (1,1,1,1,1,...), where p(S) = (1 - S^2)^3.
0, 3, 6, 15, 36, 85, 198, 456, 1040, 2352, 5280, 11776, 26112, 57600, 126464, 276480, 602112, 1306624, 2826240, 6094848, 13107200, 28114944, 60162048, 128450560, 273678336, 581959680, 1235222528, 2617245696, 5536481280, 11693719552, 24662507520, 51942260736
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..186
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
Programs
-
Magma
[0,3,6] cat [2^(n-6)*(60 +17*n +n^2): n in [3..40]]; // G. C. Greubel, Jun 05 2023
-
Mathematica
z = 60; s = x/(1-x); p = (1 - s^2)^3; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291013 *) LinearRecurrence[{6,-12,8}, {0,3,6,15,36,85}, 41] (* G. C. Greubel, Jun 05 2023 *)
-
PARI
concat(0, Vec(x*(3 -12*x +15*x^2 -6*x^3 +x^4)/(1-2*x)^3 + O(x^50))) \\ Colin Barker, Aug 23 2017
-
SageMath
[(2^(n-2)*(60 +17*n +n^2) -15*int(n==0) + 9*int(n==1))//16 for n in range(41)] # G. C. Greubel, Jun 05 2023
Formula
G.f.: x*(3 - 12*x + 15*x^2 - 6*x^3 + x^4)/(1 - 2*x)^3.
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3) for n >= 7.
a(n) = 2^(n-6) * (60 + 17*n + n^2) for n>2. - Colin Barker, Aug 23 2017
E.g.f.: -(15/16) + (9/16)*x - x^2/16 + (1/16)*(15 +9*x +x^2)*exp(2*x). - G. C. Greubel, Jun 05 2023
Comments