A291015 p-INVERT of (1,1,1,1,1,...), where p(S) = (1 - S^3)^2.
2, 7, 23, 75, 244, 793, 2576, 8366, 27167, 88215, 286439, 930072, 3019941, 9805712, 31838986, 103380599, 335674791, 1089929347, 3538978588, 11490991649, 37311016064, 121148109014, 393365440335, 1277249563655, 4147203285279, 13465884484800, 43723452275981
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-6,1).
Programs
-
Magma
I:=[2,7,23]; [n le 3 select I[n] else 5*Self(n-1) -6*Self(n-2) +Self(n-3): n in [1..50]]; // G. C. Greubel, Jun 06 2023
-
Mathematica
z = 60; s = x/(1-x); p = (1 - s^3)^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291015 *) LinearRecurrence[{5,-6,1}, {2,7,23}, 50] (* G. C. Greubel, Jun 06 2023 *)
-
SageMath
@CachedFunction def a(n): # a = A291015 if (n<3): return (2,7,23)[n] else: return 5*a(n-1) - 6*a(n-2) + a(n-3) [a(n) for n in range(51)] # G. C. Greubel, Jun 06 2023
Formula
G.f.: (2 - 3*x)/(1 - 5*x + 6*x^2 - x^3).
a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3) n >= 4.
Comments