A291016 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - 4*S + S^2.
4, 19, 90, 426, 2016, 9540, 45144, 213624, 1010880, 4783536, 22635936, 107114400, 506870784, 2398538304, 11350005120, 53708800896, 254152774656, 1202663842560, 5691066407424, 26930415389184, 127436093890560, 603034071008256, 2853587862706176
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-6).
Programs
-
Magma
I:=[4,19]; [n le 2 select I[n] else 6*(Self(n-1)-Self(n-2)): n in [1..40]]; // G. C. Greubel, Jun 06 2023
-
Mathematica
z = 60; s = x/(1-x); p = 1 - 4 s + s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291016 *) LinearRecurrence[{6,-6}, {4,19}, 40] (* G. C. Greubel, Jun 06 2023 *)
-
SageMath
A291016=BinaryRecurrenceSequence(6,-6,4,19) [A291016(n) for n in range(51)] # G. C. Greubel, Jun 06 2023
Formula
G.f.: (4 - 5*x)/(1 - 6*x + 6*x^2).
a(n) = 6*a(n-1) - 6*a(n-2) n >= 3.
From G. C. Greubel, Jun 06 2023: (Start)
a(n) = ((3+sqrt(3))^(n+4) - (3-sqrt(3))^(n+4))/(72*sqrt(3)).
a(n) = 6^(n/2)*(4*ChebyshevU(n, sqrt(3/2)) - (5/sqrt(6))*ChebyshevU(n - 1, sqrt(3/2))).
E.g.f.: exp(3*x)*(4*cosh(sqrt(3)*x) + (7/sqrt(3))*sinh(sqrt(3)*x)). (End)
Comments