A291024 p-INVERT of (1,1,1,1,1,...), where p(S) = (1 - 2 S^2)^2.
0, 4, 8, 24, 64, 172, 456, 1200, 3136, 8148, 21064, 54216, 139008, 355196, 904840, 2298720, 5825408, 14729636, 37168008, 93612408, 235369664, 590852172, 1481051720, 3707411472, 9268764096, 23145174388, 57732471752, 143857070376, 358113876352, 890666303260
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..999
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-4,-1).
Programs
-
Mathematica
z = 60; s = x/(1 - x); p = 1 - 3 s^2 + 2 s^3; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291024 *) u/4 (* A291142 *)
-
PARI
concat(0, Vec(4*x*(1 - 2*x) / (1 - 2*x - x^2)^2 + O(x^30))) \\ Colin Barker, Aug 24 2017
Formula
G.f.: -((4 (-x + 2 x^2))/(-1 + 2 x + x^2)^2).
a(n) = 4*a(n-1) - 2 a(n-2) - 4*a(n-3) - a(n-4) for n >= 5.
a(n) = 4*A291142(n) for n >= 0.
a(n) = ((1+sqrt(2))^n*(3*sqrt(2) + 2*(-1+sqrt(2))*n) - (1-sqrt(2))^n*(3*sqrt(2) + 2*(1+sqrt(2))*n)) / 4. - Colin Barker, Aug 24 2017
E.g.f.: exp(x)*x*cosh(sqrt(2)*x) + 3*exp(x)*sinh(sqrt(2)*x)/sqrt(2). - Stefano Spezia, Jun 07 2025
Comments