A291026 p-INVERT of the positive integers, where p(S) = 1 - 4*S + S^2.
4, 23, 128, 711, 3948, 21920, 121700, 675673, 3751296, 20826953, 115629868, 641969344, 3564171060, 19788040311, 109861881472, 609945846247, 3386378699324, 18800948912352, 104381615697460, 579519775642745, 3217455182279552, 17863096800262569
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-15,8,-1).
Programs
-
Mathematica
z = 60; s = x/(1 - x)^2; p = 1 - 4 s + s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *) u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291026 *) LinearRecurrence[{8,-15,8,-1},{4,23,128,711},30] (* Harvey P. Dale, May 18 2024 *)
Formula
G.f.: (4 - 9 x + 4 x^2)/(1 - 8 x + 15 x^2 - 8 x^3 + x^4).
a(n) = 8*a(n-1) - 15*a(n-2) + 8*a(n-3) - a(n-4).
Comments