A291042 One powerful arithmetic progression with nontrivial difference and maximal length.
10529630094750052867957659797284314695762718513641400204044879414141178131103515625, 94766670852750475811618938175558832261864466622772601836403914727270603179931640625, 179003711610750898755280216553833349827966214731903803468762950040400028228759765625, 263240752368751321698941494932107867394067962841035005101121985353529453277587890625, 347477793126751744642602773310382384960169710950166206733481020666658878326416015625
Offset: 1
Examples
a(1) is obviously a first power. a(2) = 307841957589849138828884412917083740234375^2 is a square. a(3) = 5635779747116948576103515625^3 is a third power. a(4) = 716288998461106640625^4 is a fourth power. a(5) = 51072299355515625^5 is a fifth power.
Links
- John P. Robertson, The maximal length of a powerful arithmetic progression, American Mathematical Monthly 107 (2000), 951.
Crossrefs
Cf. A050923.
Comments