A291048 Number of nonequivalent maximal irredundant sets in the n-cycle graph up to rotation.
0, 1, 1, 2, 2, 3, 2, 3, 4, 8, 6, 11, 11, 17, 25, 32, 41, 59, 79, 118, 157, 221, 303, 436, 610, 864, 1215, 1724, 2436, 3484, 4926, 7029, 9990, 14270, 20354, 29113, 41572, 59517, 85186, 122127, 175018, 251176, 360404, 517758, 743895, 1069633, 1538313, 2213894
Offset: 1
Keywords
Examples
Case n=7: admissible nonequivalent words are 0010011 and 0010101, so a(7)=2.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Eric Weisstein's World of Mathematics, Cycle Graph.
- Eric Weisstein's World of Mathematics, Maximal Irredundant Set.
Crossrefs
Cf. A286954.
Programs
-
Mathematica
Table[(1/n) Sum[EulerPhi[n/d] SeriesCoefficient[x^2*(2 + 3 x + 4 x^2 + 5 x^3 - 7 x^5 - 16 x^6 - 9 x^7 + 20 x^8 + 11 x^9 - 14 x^12)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2 x^8 + x^9 - 2 x^10 - x^11 + x^14), {x, 0, d}], {d, Divisors@ n}], {n, 48}] (* Michael De Vlieger, Aug 17 2017 *)
-
PARI
{my (v=concat([0],Vec((2 + 3*x + 4*x^2 + 5*x^3 - 7*x^5 - 16*x^6 - 9*x^7 + 20*x^8 + 11*x^9 - 14*x^12)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14) + O(x^50)))); vector(length(v), n, sumdiv(n,d,eulerphi(n/d)*v[d])/n)}
Formula
a(n) = (1/n) * Sum_{d|n} phi(n/d) * A286954(d).
Comments