cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291048 Number of nonequivalent maximal irredundant sets in the n-cycle graph up to rotation.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 2, 3, 4, 8, 6, 11, 11, 17, 25, 32, 41, 59, 79, 118, 157, 221, 303, 436, 610, 864, 1215, 1724, 2436, 3484, 4926, 7029, 9990, 14270, 20354, 29113, 41572, 59517, 85186, 122127, 175018, 251176, 360404, 517758, 743895, 1069633, 1538313, 2213894
Offset: 1

Views

Author

Andrew Howroyd, Aug 16 2017

Keywords

Comments

Equivalently, the number of n-bead binary necklaces (with turnover not allowed) avoiding the patterns 111, 1101, 1011, 00000, 000010, 010000, 000100, 001000, 0100010.

Examples

			Case n=7: admissible nonequivalent words are 0010011 and 0010101, so a(7)=2.
		

Crossrefs

Cf. A286954.

Programs

  • Mathematica
    Table[(1/n) Sum[EulerPhi[n/d] SeriesCoefficient[x^2*(2 + 3 x + 4 x^2 + 5 x^3 - 7 x^5 - 16 x^6 - 9 x^7 + 20 x^8 + 11 x^9 - 14 x^12)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2 x^8 + x^9 - 2 x^10 - x^11 + x^14), {x, 0, d}], {d, Divisors@ n}], {n, 48}] (* Michael De Vlieger, Aug 17 2017 *)
  • PARI
    {my (v=concat([0],Vec((2 + 3*x + 4*x^2 + 5*x^3 - 7*x^5 - 16*x^6 - 9*x^7 + 20*x^8 + 11*x^9 - 14*x^12)/(1 - x^2 - x^3 - x^4 - x^5 + x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + x^14) + O(x^50))));
    vector(length(v), n, sumdiv(n,d,eulerphi(n/d)*v[d])/n)}

Formula

a(n) = (1/n) * Sum_{d|n} phi(n/d) * A286954(d).