cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291052 Primes p such that the sum of the cubes of digits of p equals the sum of digits of p^3.

Original entry on oeis.org

2, 31, 103, 1321, 2003, 3001, 3221, 10303, 21323, 23021, 30203, 30313, 31123, 31223, 31321, 32003, 33013, 33211, 100003, 102241, 103231, 113023, 122033, 122321, 130223, 131203, 132001, 132103, 133201, 133213, 200003, 203311, 210233, 213203, 220411, 221303, 223211
Offset: 1

Views

Author

K. D. Bajpai, Aug 17 2017

Keywords

Examples

			a(2)=31 is prime: [3^3 + 1^3 = 27 + 1] = 28; [31^3 = 29791, 2+9+7+9+1] = 28.
a(4)=1321 is prime: [1^3 + 3^3 + 2^3 + 1^3 = 1 + 27 + 8 + 1] = 37; [31^3 = 2305199161, 2+3+0+5+1+9+9+1+6+1] = 37.
		

Crossrefs

Intersection of A000040 and A165551.

Programs

  • Mathematica
    Select[Prime[Range[30000]], Total[IntegerDigits[#]^3] == Plus @@ IntegerDigits[#^3] &]
  • PARI
    forprime(p=1, 30000, d=digits(p); if(sum(i=1, length(d), d[i]^3) == sumdigits(p^3), print1(p", ")));