A291094 Denominators of fractions with nontrivial anomalous cancellation, listed with multiplicity if multiple numerators are possible.
64, 65, 95, 98, 110, 120, 121, 130, 132, 136, 140, 143, 150, 154, 160, 160, 165, 170, 176, 180, 187, 190, 190, 192, 194, 195, 196, 196, 198, 202, 204, 206, 208, 210, 220, 220, 230, 231, 231, 238, 238, 240, 242, 242, 250
Offset: 1
Examples
The first two terms correspond to the fractions 16/64 = 1/4 (cancel the 6!) and 26/65 = 2/5 (again cancel the 6!). The first 20 fractions are (before cancellation) 16/64, 26/65, 19/95, 49/98, 11/110, 12/120, 22/121, 13/130, 33/132, 34/136, 14/140, 44/143, 15/150, 55/154, 16/160, 64/160, 66/165, 17/170, 77/176, 18/180, which equal (after cancellation) 1/4, 2/5, 1/5, 1/2, 1/10, 1/10, 2/11, 1/10, 1/4, 1/4, 1/10, 4/13, 1/10, 5/14, 1/10, 2/5, 2/5, 1/10, 7/16, 1/10.
References
- R. P. Boas, "Anomalous Cancellation." Ch. 6 in Mathematical Plums (Ed. R. Honsberger). Washington, DC: Math. Assoc. Amer., pp. 113-129, 1979.
- A. Moessner, Scripta Math. 19; 20.
- C. S. Ogilvy and J. T. Anderson, Excursions in Number Theory. New York: Dover, 1988, pp. 86-87.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..8544 (denominators d <= 10^4; first 169 terms from N. J. A. Sloane)
- Michael De Vlieger, Correlation of A291093 and A291094 and their ratio (for denominators d <= 10^4)
- B. L. Schwartz, Proposal 434, Mathematics Magazine Vol. 34, No. 3 (1961), Problems and Questions, p. 173.
- N. J. A. Sloane, Maple program.
- N. J. A. Sloane, List of first 169 fractions (file gives line number, numerator, denominator).
- Eric W. Weisstein, Anomalous Cancellation.
Crossrefs
Programs
-
Mathematica
Flatten@ Table[ConstantArray[m, Count[Range[11, m - 1], ?(Function[k, Function[{r, n, d}, AnyTrue[Flatten@ Map[Apply[Outer[Divide, #1, #2] &, #] &, Transpose@ MapAt[# /. 0 -> Nothing &, Map[Function[x, Map[Map[FromDigits@ Delete[x, #] &, Position[x, #]] &, Intersection @@ {n, d}]], {n, d}], -1]], # == Divide @@ {k, m} &]] @@ {k/m, #, First@ #, Last@ #} &@ Map[IntegerDigits, {k, m}] - Boole[Mod[{k, m}, 10] == {0, 0}]])]], {m, 250}] (* _Michael De Vlieger, Sep 13 2017 *)
Comments