A291107 Number of irredundant sets in the n-pan graph.
3, 5, 7, 16, 26, 42, 72, 125, 216, 367, 629, 1079, 1852, 3173, 5438, 9323, 15984, 27401, 46971, 80522, 138039, 236639, 405665, 695425, 1192158, 2043700, 3503484, 6005970, 10295947, 17650192, 30257465, 51869927, 88919855, 152434004, 261315377, 447969116, 767946883
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Irredundant Set
- Eric Weisstein's World of Mathematics, Pan Graph
- Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 1, 0, -1).
Programs
-
Mathematica
Table[RootSum[1 - #^2 - #^4 - #^5 + #^6 &, 59603 #^n - 12384 #^(1 + n) - 10700 #^(2 + n) + 17668 #^(3 + n) + 3457 #^(4 + n) + 1652 #^(5 + n) &]/89653, {n, 20}] LinearRecurrence[{1, 1, 0, 1, 0, -1}, {3, 5, 7, 16, 26, 42, 72, 125}, 20] CoefficientList[Series[(3 + 2 x - x^2 + 4 x^3 - 5 x^5)/(1 - x - x^2 - x^4 + x^6), {x, 0, 20}], x]
Formula
a(n) = a(n-1) + a(n-2) + a(n-4) - a(n-6).
G.f.: (x (3 + 2 x - x^2 + 4 x^3 - 5 x^5))/(1 - x - x^2 - x^4 + x^6).
Comments