cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291110 Number of endofunctions on [n] such that the LCM of their cycle lengths equals four.

Original entry on oeis.org

0, 0, 0, 0, 6, 150, 3240, 71610, 1692180, 43296120, 1202014800, 36144686160, 1173334341960, 40964232699390, 1532291272031520, 61185138170697450, 2599160146594218480, 117091760635760465520, 5577733223175044859840, 280195572152151651031200
Offset: 0

Views

Author

Alois P. Heinz, Aug 17 2017

Keywords

Crossrefs

Column k=4 of A222029.

Programs

  • Maple
    b:= proc(n, m) option remember; (k-> `if`(m>k, 0,
          `if`(n=0, `if`(m=k, 1, 0), add(b(n-j, ilcm(m, j))
           *binomial(n-1, j-1)*(j-1)!, j=1..n))))(4)
        end:
    a:= n-> add(b(j, 1)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..22);
  • Mathematica
    b[n_, m_] := b[n, m] = With[{k = 4}, If[m > k, 0, If[n == 0, If[m == k, 1, 0], Sum[b[n - j, LCM[m, j]] Binomial[n-1, j - 1] (j-1)!, {j, 1, n}]]]];
    a[n_] := If[n == 0, 0, Sum[b[j, 1] n^(n-j) Binomial[n-1, j-1], {j, 0, n}]];
    a /@ Range[0, 22] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)

Formula

a(n) ~ (3*exp(7/4) - 2*exp(3/2)) * n^(n-1). - Vaclav Kotesovec, Aug 18 2017