A291116 Number of endofunctions on [n] such that the LCM of their cycle lengths equals ten.
0, 0, 0, 0, 0, 0, 0, 504, 32256, 1460592, 59814720, 2403157680, 98055619200, 4129943329512, 180976836968928, 8281570545448200, 396324506640142080, 19840151844921504096, 1038497761573246945152, 56790713866712335971552, 3241264004352759793685760
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..387
Crossrefs
Column k=10 of A222029.
Programs
-
Maple
b:= proc(n, m) option remember; (k-> `if`(m>k, 0, `if`(n=0, `if`(m=k, 1, 0), add(b(n-j, ilcm(m, j)) *binomial(n-1, j-1)*(j-1)!, j=1..n))))(10) end: a:= n-> add(b(j, 1)*n^(n-j)*binomial(n-1, j-1), j=0..n): seq(a(n), n=0..22);
-
Mathematica
Unprotect[Power]; Power[0|0., 0|0.]=1; Protect[Power];b[n_, m_]:=b[n, m]=If[m>10, 0, If[n==0, If[m==10,1, 0], Sum[b[n - j, LCM[m, j]] Binomial[n - 1, j - 1](j - 1)!, {j, n}]]]; Table[Sum[b[j, 1]*n^(n -j) Binomial[n - 1, j - 1], {j, 0, n}], {n, 0, 25}] (* Indranil Ghosh, Aug 18 2017 *)
-
Python
from sympy.core.cache import cacheit from sympy import binomial, lcm, factorial as f @cacheit def b(n, m): return 0 if m>10 else (1 if m==10 else 0) if n==0 else sum([b(n - j, lcm(m, j))*binomial(n - 1, j - 1)*f(j - 1) for j in range(1, n + 1)]) def a(n): return sum([b(j, 1)*n**(n - j)*binomial(n - 1, j - 1) for j in range(n + 1)]) print([a(n) for n in range(26)]) # Indranil Ghosh, Aug 18 2017
Formula
a(n) ~ (exp(1) - 2*exp(3/2) - 2*exp(6/5) + 4*exp(9/5)) * n^(n-1). - Vaclav Kotesovec, Aug 18 2017