cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291116 Number of endofunctions on [n] such that the LCM of their cycle lengths equals ten.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 504, 32256, 1460592, 59814720, 2403157680, 98055619200, 4129943329512, 180976836968928, 8281570545448200, 396324506640142080, 19840151844921504096, 1038497761573246945152, 56790713866712335971552, 3241264004352759793685760
Offset: 0

Views

Author

Alois P. Heinz, Aug 17 2017

Keywords

Crossrefs

Column k=10 of A222029.

Programs

  • Maple
    b:= proc(n, m) option remember; (k-> `if`(m>k, 0,
          `if`(n=0, `if`(m=k, 1, 0), add(b(n-j, ilcm(m, j))
           *binomial(n-1, j-1)*(j-1)!, j=1..n))))(10)
        end:
    a:= n-> add(b(j, 1)*n^(n-j)*binomial(n-1, j-1), j=0..n):
    seq(a(n), n=0..22);
  • Mathematica
    Unprotect[Power]; Power[0|0., 0|0.]=1; Protect[Power];b[n_, m_]:=b[n, m]=If[m>10, 0, If[n==0, If[m==10,1, 0], Sum[b[n - j, LCM[m, j]] Binomial[n - 1, j - 1](j - 1)!, {j, n}]]]; Table[Sum[b[j, 1]*n^(n -j) Binomial[n - 1, j - 1], {j, 0, n}], {n, 0, 25}] (* Indranil Ghosh, Aug 18 2017 *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial, lcm, factorial as f
    @cacheit
    def b(n, m): return 0 if m>10 else (1 if m==10 else 0) if n==0 else sum([b(n - j, lcm(m, j))*binomial(n - 1, j - 1)*f(j - 1) for j in range(1, n + 1)])
    def a(n): return sum([b(j, 1)*n**(n - j)*binomial(n - 1, j - 1) for j in range(n + 1)])
    print([a(n) for n in range(26)]) # Indranil Ghosh, Aug 18 2017

Formula

a(n) ~ (exp(1) - 2*exp(3/2) - 2*exp(6/5) + 4*exp(9/5)) * n^(n-1). - Vaclav Kotesovec, Aug 18 2017