A291125 "Doubly A289484" numbers: numbers with prime factorization p1^e1 * p2^e2 * ... * pk^ek such that there exist i < j < k with p1^e1 * p2^e2 * ... pi^ei > p(i+1) and p1^e1 * p2^e2 * ... pj^ej > p(j+1).
60, 84, 120, 132, 168, 180, 210, 240, 252, 264, 280, 300, 312, 315, 330, 336, 360, 390, 396, 408, 420, 440, 456, 468, 480, 495, 504, 510, 520, 528, 540, 552, 560, 570, 585, 588, 600, 612, 616, 624, 630, 660, 672, 680, 684, 690, 693, 720, 728, 756, 760, 765, 770, 780
Offset: 1
Keywords
Examples
60=2^2*3*5 is a term because 2^2 > 3 and 2^2*3 > 5. 315=3^2*5*7 is a term because 3^2 > 5 and 3^2*5 > 7.
Crossrefs
Cf. A289484.
Programs
-
Maple
isA291125 := proc(n) local pset,p,pprodidx,pprod,nu,falls ; pset := sort(convert(numtheory[factorset](n),list)) ; pprod := 1; falls := 0 ; for pprodidx from 1 to nops(pset)-1 do p := pset[pprodidx] ; nu := padic[ordp](n,p) ; pprod := pprod*p^nu ; if pprod > pset[pprodidx+1] then falls := falls+1 ; if falls >= 2 then return true; end if; end if; end do: return false ; end proc: for n from 1 to 3000 do if isA291125(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Oct 20 2017
-
PARI
is(n,f=factor(n))=my(p=1,t,s); for(i=1,#f~, t=f[i,1]^f[i,2]; if(p>t,s++); p*=t); s>1 \\ Charles R Greathouse IV, Jun 10 2020
Extensions
New name from Charles R Greathouse IV, Jun 11 2020
Comments