A291139 Primes of the form floor(k^(3/2)) for some integer k.
2, 5, 11, 31, 41, 89, 103, 181, 281, 311, 353, 419, 769, 797, 811, 839, 853, 911, 1091, 1153, 1201, 1217, 1249, 1499, 1621, 1873, 2081, 2557, 2999, 3307, 3533, 3671, 3881, 3929, 4289, 5431, 6131, 6269, 6491, 6547, 7001, 7349, 7583
Offset: 1
Keywords
Examples
a(1) = floor(2^(3/2)) = floor(2.8...) = 2. a(2) = floor(3^(3/2)) = floor(5.1...) = 5. floor(4^(3/2)) = floor(8) = 8 is composite. a(3) = floor(5^(3/2)) = floor(11.1) = 11. floor(6^(3/2)) = floor(14.6...) = 14 is composite. floor(7^(3/2)) = floor(18.5...) = 18 is composite. floor(8^(3/2)) = floor(22.6...) = 22 is composite. floor(9^(3/2)) = floor(27) = 27 is composite. a(4) = floor(10^(3/2)) = floor(31.6) = 31.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A200141.
Programs
-
Mathematica
Select[Floor[Range[1000]^(3/2)],PrimeQ] (* Harvey P. Dale, Jul 01 2019 *)
-
PARI
list(lim)=my(v=List(),t); lim\=1; for(n=2,sqrtnint((lim+1)^2,3)-ispower(lim+1,3), if(isprime(t=sqrtint(n^3)), listput(v,t))); Vec(v)
Formula
Conjecturally, a(n) ~ (1.5 n log n)^1.5 and there are ~ x^(2/3)/log x members of this sequence up to x. - Charles R Greathouse IV, Oct 14 2017
Comments