cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A292571 Lucas-Carmichael numbers whose Dedekind psi value is a square.

Original entry on oeis.org

935, 31535, 76751, 1707839, 3106799, 11141999, 24685199, 43383167, 83618639, 151524071, 161841239, 189099039, 212133599, 213884999, 219155615, 233743319, 241485839, 271038599, 287432495, 338340239, 353107799, 624840479, 660423455, 945236159, 1171355471
Offset: 1

Views

Author

Amiram Eldar, Sep 19 2017

Keywords

Examples

			psi(935) = 36^2.
		

Crossrefs

Intersection of A006972 and A291167.

Programs

  • Mathematica
    psi[n_] := If[n < 1, 0, n*Sum[MoebiusMu[d]^2/d, {d, Divisors@n}]]; s = Import["b006972.txt","Data"][[All,-1]]; Select[s, IntegerQ@Sqrt[psi@#] &]

A291549 Numbers n such that both phi(n) and psi(n) are perfect squares.

Original entry on oeis.org

1, 60, 170, 240, 315, 540, 679, 680, 960, 1500, 2142, 2160, 2720, 2835, 3840, 4250, 4365, 4860, 5770, 6000, 7875, 8568, 8640, 9154, 9809, 10880, 13500, 14322, 15360, 15435, 17000, 19278, 19440, 22413, 23080, 24000, 25515, 29682, 33271, 34272, 34560, 36616, 37114, 37500
Offset: 1

Views

Author

Amiram Eldar and Altug Alkan, Aug 26 2017

Keywords

Comments

Intersection of A039770 and A291167.
Squarefree terms are 1, 170, 679, 5770, 9154, 9809, 14322, ...
From Robert Israel, May 16 2019: (Start)
If n is in the sequence and p is a prime factor of n then p^2*n is in the sequence.
If n and m are coprime members of the sequence, then n*m is in the sequence. (End)

Examples

			60 is a term because phi(60) = 16 and psi(60) = 144 are both perfect squares.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F,psi,phi,p;
       F:= numtheory:-factorset(n);
       issqr( n*mul(1-1/p, p=F)) and issqr(n*mul(1+1/p,p=F))
    end proc:
    select(filter, [$1..50000]); # Robert Israel, May 15 2019
  • Mathematica
    Select[Range[10^5], AllTrue[{EulerPhi@ #, If[# < 1, 0, # Sum[MoebiusMu[d]^2/d, {d, Divisors@ #}]]}, IntegerQ@ Sqrt@ # &] &] (* Michael De Vlieger, Aug 26 2017, after Michael Somos at A001615 *)
  • PARI
    a001615(n) = my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))
    isok(n) = issquare(eulerphi(n)) && issquare(a001615(n)); \\ after Charles R Greathouse IV at A001615

A292064 Triangular numbers k such that psi(k) is a square, where psi(k) is the Dedekind psi function (A001615).

Original entry on oeis.org

1, 3, 66, 210, 276, 1128, 2346, 2556, 4278, 5778, 7140, 7750, 7875, 11781, 13041, 18336, 22578, 27966, 28920, 31878, 32131, 32640, 35511, 51681, 70125, 73536, 79800, 89676, 93096, 100128, 102378, 122760, 139128, 169653, 173755, 177906, 209628, 223446, 253116
Offset: 1

Views

Author

Amiram Eldar, Sep 08 2017

Keywords

Comments

The indices of these triangular numbers are 1, 2, 11, 20, 23, 47, 68, 71, 92, 107, 119, 124, 125, 153, 161, 191, 212, 236, 240, ...
The indices of the square psi values are 1, 2, 12, 24, 24, 48, 72, 72, 96, 108, 144, 120, 120, 144, 144, 192, 216, 240, 264, ...
Intersection of A000217 and A291167. - Altug Alkan, Sep 08 2017

Examples

			66 is in the sequence since 66 = 11*12/2 is triangular, and psi(66) = 144 = 12^2 is square.
		

Crossrefs

Programs

  • Mathematica
    psi[n_] := If[n<1, 0, n*Sum[MoebiusMu[d]^2/d, {d, Divisors @ n}]];
    Select[Accumulate[Range[1000]], IntegerQ[Sqrt[psi[#]]]&]

A291638 Numbers n such that psi(n) and sigma(n) both are perfect squares and n is not a squarefree number.

Original entry on oeis.org

370440, 1704024, 3926664, 11039112, 13854456, 21707784, 25264008, 28375704, 40822488, 44378712, 57862728, 59196312, 63937944, 75051144, 79051896, 79940952, 103500936, 107946216, 128394504, 134766072, 162178632, 169735608, 177737112, 191517480, 193530168, 195221880, 196407288, 215077464
Offset: 1

Views

Author

Altug Alkan, Aug 28 2017

Keywords

Examples

			370440 = 2^3*3^3*5*7^3 is a term because psi(370440) = 2^2*3^2*7^2*(1+2)*(1+3)*(1+5)*(1+7) = 2^8*3^4*7^2 and sigma(370440) = (1+2+2^2+2^3)*(1+3+3^2+3^3)*(1+5)*(1+7+7^2+7^3) = 2^8*3^2*5^4.
		

Crossrefs

Programs

  • PARI
    a001615(n) = my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1));
    isok(n) = !issquarefree(n) && issquare(a001615(n)) && issquare(sigma(n)) \\ after Charles R Greathouse IV at A001615
Showing 1-4 of 4 results.