A291182 p-INVERT of the positive integers, where p(S) = 1 - 3*S + 2*S^2.
3, 13, 52, 203, 781, 2976, 11267, 42469, 159596, 598499, 2241165, 8383872, 31340691, 117100285, 437378260, 1633244795, 6097779229, 22763575008, 84971451155, 317161317781, 1183776154124, 4418211213011, 16489770106653, 61542705525504, 229685859522339
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-14,7,-1)
Programs
-
Magma
I:=[3,13,52,203]; [n le 4 select I[n] else 7*Self(n-1)-14*Self(n-2)+7*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Aug 20 2017
-
Mathematica
z = 60; s = x/(1 - x)^2; p = 1 - 3 s + 2 s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291182 *) LinearRecurrence[{7, -14, 7, -1}, {3, 13, 52, 203}, 40] (* Vincenzo Librandi, Aug 20 2017 *)
Formula
G.f.: (3 - 8 x + 3 x^2)/(1 - 7 x + 14 x^2 - 7 x^3 + x^4).
a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3) - a(n-4).
Comments