A291183 p-INVERT of the positive integers, where p(S) = 1 - 4*S + 2*S^2.
4, 22, 116, 608, 3180, 16618, 86812, 453440, 2368292, 12369174, 64601428, 337397536, 1762142540, 9203221994, 48066074172, 251036784256, 1311100720708, 6847542588950, 35762957380148, 186780746599392, 975507894703660, 5094827328491242, 26608975328086364
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-16,8,-1)
Programs
-
Magma
I:=[4,22,116,608]; [n le 4 select I[n] else 8*Self(n-1)-16*Self(n-2)+8*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Aug 20 2017
-
Mathematica
z = 60; s = x/(1 - x)^2; p = 1 - 4 s + 2 s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291183 *) LinearRecurrence[{8, -16, 8, -1}, {4, 22, 116, 608}, 40] (* Vincenzo Librandi, Aug 20 2017 *)
Formula
G.f.: (2 (2 - 5 x + 2 x^2))/(1 - 8 x + 16 x^2 - 8 x^3 + x^4).
a(n) = 8*a(n-1) - 16*a(n-2) + 8*a(n-3) - a(n-4).
Comments