A291204 Number F(n,h,t) of forests of t labeled rooted trees with n vertices such that the root of each subtree contains the subtree's minimal label and h is the maximum of 0 and the tree heights; triangle of triangles F(n,h,t), n>=0, h=0..n, t=0..n-h, read by layers, then by rows.
1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 3, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 7, 6, 0, 4, 4, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 15, 25, 10, 0, 14, 30, 10, 0, 8, 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 31, 90, 65, 15, 0, 51, 174, 120, 20, 0, 54, 63, 15, 0, 13, 6, 0, 1, 0
Offset: 0
Examples
n h\t: 0 1 2 3 4 5 : A179454 : A132393 : A000142 -----+-----------------+---------+---------------+-------- 0 0 : 1 : 1 : 1 : 1 -----+-----------------+---------+---------------+-------- 1 0 : 0 1 : 1 : . : 1 1 : 0 : : 1 : 1 -----+-----------------+---------+---------------+-------- 2 0 : 0 0 1 : 1 : . . : 2 1 : 0 1 : 1 : . : 2 2 : 0 : : 1 1 : 2 -----+-----------------+---------+---------------+-------- 3 0 : 0 0 0 1 : 1 : . . . : 3 1 : 0 1 3 : 4 : . . : 3 2 : 0 1 : 1 : . : 3 3 : 0 : : 2 3 1 : 6 -----+-----------------+---------+---------------+-------- 4 0 : 0 0 0 0 1 : 1 : . . . . : 4 1 : 0 1 7 6 : 14 : . . . : 4 2 : 0 4 4 : 8 : . . : 4 3 : 0 1 : 1 : . : 4 4 : 0 : : 6 11 6 1 : 24 -----+-----------------+---------+---------------+-------- 5 0 : 0 0 0 0 0 1 : 1 : . . . . . : 5 1 : 0 1 15 25 10 : 51 : . . . . : 5 2 : 0 14 30 10 : 54 : . . . : 5 3 : 0 8 5 : 13 : . . : 5 4 : 0 1 : 1 : . : 5 5 : 0 : : 24 50 35 10 1 : 120 -----+-----------------+---------+---------------+--------
Links
- Alois P. Heinz, Layers n = 0..48, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, t, h) option remember; expand(`if`(n=0 or h=0, x^(t*n), add( binomial(n-1, j-1)*x^t*b(j-1, 0, h-1)*b(n-j, t, h), j=1..n))) end: g:= (n, h)-> b(n, 1, h)-`if`(h=0, 0, b(n, 1, h-1)): F:= (n, h, t)-> coeff(g(n, h), x, t): seq(seq(seq(F(n, h, t), t=0..n-h), h=0..n), n=0..8);
-
Mathematica
b[n_, t_, h_] := b[n, t, h] = Expand[If[n == 0 || h == 0, x^(t*n), Sum[Binomial[n-1, j-1]*x^t*b[j-1, 0, h-1]*b[n-j, t, h], {j, 1, n}]]]; g[n_, h_] := b[n, 1, h] - If[h == 0, 0, b[n, 1, h - 1]]; F[n_, h_, t_] := Coefficient[g[n, h], x, t]; Table[Table[Table[F[n, h, t], {t, 0, n - h}], {h, 0, n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Mar 17 2022, after Alois P. Heinz *)
Formula
Sum_{i=0..n} F(n,i,n-i) = A000325(n).
Sum_{d=0..n} Sum_{i=0..d} F(n,i,d-i) = A000142(n).
Sum_{h=0..n} Sum_{t=0..n-h} t * F(n,h,t) = A000254(n).
F(2n,n,n) = A001791(n) for n>0.
F(2n,1,n) = A007820(n).
F(n,1,n-1) = A000217(n-1) for n>0.
F(n,n-1,1) = A057427(n).
F(n,1,2) = A000225(n-1) for n>2.
F(n,0,n) = 1 = A000012(n).
F(n,0,0) = A000007(n).
Comments