cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291206 Semi-octavan primes: primes of the form x^4 + y^8.

Original entry on oeis.org

2, 17, 257, 337, 881, 1297, 2657, 6577, 10657, 14897, 16561, 28817, 65537, 65617, 66161, 80177, 83777, 149057, 160001, 166561, 260017, 280097, 331777, 391921, 394721, 411361, 463537, 596977, 614657, 621217, 847601, 1055137, 1336337, 1342897, 1682017, 1763137
Offset: 1

Views

Author

Keywords

Examples

			a(1) = 1^4 + 1^8 = 2.
a(2) = 2^4 + 1^8 = 17.
a(3) = 1^4 + 2^8 = 257.
a(4) = 3^4 + 2^8 = 337.
		

Crossrefs

Subsequence of A002645 and hence of A028916. A006686 is a subsequence.

Programs

  • Mathematica
    Take[Select[Flatten[Table[x^4+y^8,{x,40},{y,40}]],PrimeQ]//Union,40] (* Harvey P. Dale, May 01 2025 *)
  • PARI
    list(lim)=my(v=List([2]),x4,t); for(x=1, sqrtnint(lim\=1,4), x4=x^4; forstep(y=x%2+1, sqrtnint(lim-x4,8), 2, if(isprime(t=x4+y^8), listput(v, t)))); Set(v)