cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A290580 E.g.f. W = W(x,m) satisfies: W = E(x*W,m) where E(x,m) = cn(i*x,m) - i*sn(i*x,m), with sn(x,m) and cn(x,m) being Jacobi elliptic functions, read as an irregular triangle of coefficients T(n,k) of x^n*m^k for n>=0 and k=0..[n/2].

Original entry on oeis.org

1, 1, 3, 0, 16, 1, 125, 20, 0, 1296, 364, 1, 16807, 7028, 112, 0, 262144, 148752, 5868, 1, 4782969, 3471192, 250128, 576, 0, 100000000, 89097664, 10020912, 82408, 1, 2357947691, 2503362488, 399379728, 7354688, 2816, 0, 61917364224, 76575071488, 16255733440, 533661360, 1066552, 1, 1792160394037, 2536513162508, 684615750832, 35063521792, 194025728, 13312, 0, 56693912375296, 90532686154752, 30031767680256, 2200207121408, 24852054816, 13053492, 1, 1946195068359375, 3465845396598540, 1376568893633760, 135791393602560, 2630843800320, 4759188480, 61440, 0
Offset: 0

Views

Author

Paul D. Hanna, Aug 07 2017

Keywords

Comments

An elliptic analog of the function W = LambertW(-x)/(-x) where W = exp(x*W).

Examples

			E.g.f. W(x,m) = 1 + (1)*x + (3)*x^2/2! + (16 + m)*x^3/3! +
(125 + 20*m)*x^4/4! + (1296 + 364*m + m^2)*x^5/5! +
(16807 + 7028*m + 112*m^2)*x^6/6! +
(262144 + 148752*m + 5868*m^2 + m^3)*x^7/7! +
(4782969 + 3471192*m + 250128*m^2 + 576*m^3)*x^8/8! +
(100000000 + 89097664*m + 10020912*m^2 + 82408*m^3 + m^4)*x^9/9! +
(2357947691 + 2503362488*m + 399379728*m^2 + 7354688*m^3 + 2816*m^4)*x^10/10! +...
such that W = W(x,m) satisfies:
W = E(x*W,m)
where E(x,m) is an elliptic analog to the exponential function, defined by
E(x,m) = cn(i*x,m) - i*sn(i*x,m).
By Jacobi's imaginary transformation, we have
E(x,m) = (1 + sn(x,1-m)) / cn(x,1-m),
where
E(x,m) = 1 + x + x^2/2! + (m + 1)*x^3/3! + (4*m + 1)*x^4/4! + (m^2 + 14*m + 1)*x^5/5! + (16*m^2 + 44*m + 1)*x^6/6! + (m^3 + 135*m^2 + 135*m + 1)*x^7/7! + (64*m^3 + 912*m^2 + 408*m + 1)*x^8/8! + (m^4 + 1228*m^3 + 5478*m^2 + 1228*m + 1)*x^9/9! + (256*m^4 + 15808*m^3 + 30768*m^2 + 3688*m + 1)*x^10/10! +...
Explicitly,
W(x,m) = (1/x) Series_Reversion( x/E(x,m) ).
As a series of row polynomial coefficients of powers of x,
W(x,m) = Sum_{n>=0} x^n/n! * { [x^n/n!] E(x,m)^(n+1) / (n+1) }.
IRREGULAR TRIANGLE.
This triangle of coefficients in e.g.f. W(x,m) begins:
1 ;
1 ;
3, 0 ;
16, 1 ;
125, 20, 0 ;
1296, 364, 1 ;
16807, 7028, 112, 0 ;
262144, 148752, 5868, 1 ;
4782969, 3471192, 250128, 576, 0 ;
100000000, 89097664, 10020912, 82408, 1 ;
2357947691, 2503362488, 399379728, 7354688, 2816, 0 ;
61917364224, 76575071488, 16255733440, 533661360, 1066552, 1 ;
1792160394037, 2536513162508, 684615750832, 35063521792, 194025728, 13312, 0 ; ...
		

Crossrefs

Cf. A290579 (row sums), A000272 (column 0), A290581 (column 1), A291214 (column 2).

Programs

  • PARI
    /* By definition: */
    { T(n,k) = my(W=1,E=1, S=x,C=1,D=1); for(i=0,n,
    S = intformal(C*D +x*O(x^n)) ;
    C = 1 - intformal(S*D) ; D = 1 - m*intformal(S*C) ;
    E = subst(C - I*S,x,I*x) ) ;
    for(i=0,n, W = subst(E,x,x*W));
    n!*polcoeff(polcoeff(W, n,x), k,m) }
    for(n=0,10, for(k=0,n\2, print1( T(n,k), ", ")); print(""))
    
  • PARI
    /* Using Jacobi's imaginary transformation: */
    { T(n,k) = my(W=1,E=1, S=x,C=1,D=1); for(i=0,n,
    S = intformal(C*D +x*O(x^n)) ;
    C = 1 - intformal(S*D) ; D = 1 - m*intformal(S*C) ;
    E = subst( (1 + S)/C,m,1-m) ) ;
    for(i=0,n, W = subst(E,x,x*W));
    n!*polcoeff(polcoeff(W, n,x), k,m) }
    for(n=0,10, for(k=0,n\2, print1( T(n,k), ", ")); print(""))

Formula

E.g.f.: W(x,m) = (1/x) * Series_Reversion( x*cn(x,1-m)/(1 + sn(x,1-m)) ).
Define E(x,m) = (1 + sn(x,1-m)) / cn(x,1-m), then
(1) W(x,m) = (1/x) Series_Reversion( x/E(x,m) ).
Further, the n-th row polynomial in m, R(n,m), is given by
(2) R(n,m) = [x^n/n!] E(x,m)^(n+1) / (n+1) for n>=0, where
W(x,m) = Sum_{n>=0} R(n,m) * x^n/n!.

A290581 Column 1 of triangle A290580.

Original entry on oeis.org

1, 20, 364, 7028, 148752, 3471192, 89097664, 2503362488, 76575071488, 2536513162508, 90532686154752, 3465845396598540, 141726054915248128, 6167370619705004144, 284635248765764878336, 13889365886508877963184, 714612366728939248091136, 38667882915659893417754820, 2195406208657284278474506240, 130509259754593318496376665060, 8107405596523654695095077175296, 525358015896796804145274761270600
Offset: 1

Views

Author

Paul D. Hanna, Aug 07 2017

Keywords

Comments

a(n) = A290580(n+2,1) for n>=1.

Crossrefs

Programs

  • PARI
    /* As column 1 of triangle A290580 */
    { A290580(n,k) = my(W=1,E=1, S=x,C=1,D=1); for(i=0,n,
    S = intformal(C*D +x*O(x^n)) ;
    C = 1 - intformal(S*D) ; D = 1 - m*intformal(S*C) ;
    E = subst( (1 + S)/C,m,1-m) ) ;
    for(i=0,n, W = subst(E,x,x*W));
    n!*polcoeff(polcoeff(W, n,x), k,m) }
    for(n=1,25, print1( A290580(n+2,1), ", "))

Formula

a(n) ~ c * n^(n+2), where c = (exp(5) - 4*exp(3) - exp(1))/16 = 4.0845455988354304513775733719295... - Vaclav Kotesovec, Aug 21 2017
Showing 1-2 of 2 results.