A291217 p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - S^3.
0, 0, 1, 0, 3, 1, 6, 6, 11, 21, 24, 57, 66, 138, 194, 330, 546, 827, 1452, 2175, 3739, 5826, 9582, 15519, 24807, 40836, 64933, 106584, 170796, 277696, 448980, 724968, 1177181, 1897380, 3080367, 4972113, 8055918, 13029534, 21075947, 34125561, 55169988
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,3, 1,-3,0,1)
Programs
-
Magma
I:=[0,0,1,0,3,1]; [n le 6 select I[n] else 3*Self(n-2)+Self(n-3)-3*Self(n-4)+Self(n-6): n in [1..45]]; // Vincenzo Librandi, Aug 25 2017
-
Mathematica
z = 60; s = x/(1 - x^2); p = 1 - s^3; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000035 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291217 *) LinearRecurrence[{0, 3, 1, -3, 0, 1}, {0, 0, 1, 0, 3, 1}, 50] (* Vincenzo Librandi, Aug 25 2017 *)
Formula
G.f.: -(x^2/((-1 + x + x^2) (1 + x - x^2 - x^3 + x^4))).
a(n) = 3*a(n-2) + a(n-3) - 3*a(n-4) + a(n-6) for n >= 7.
Comments