A291219 p-INVERT of (0,1,0,1,0,1,...), where p(S) = 1 - S - S^3.
1, 1, 3, 5, 11, 21, 42, 83, 163, 323, 635, 1255, 2473, 4880, 9625, 18985, 37451, 73869, 145715, 287421, 566954, 1118331, 2205947, 4351307, 8583091, 16930447, 33395857, 65874464, 129939569, 256310161, 505580371, 997274197, 1967156763, 3880282533, 7653987242
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,3,-1,-3,1,1)
Programs
-
Magma
I:=[1,1,3,5,11,21]; [n le 6 select I[n] else Self(n-1)+3*Self(n-2)-Self(n-3)-3*Self(n-4)+Self(n-5)+Self(n-6): n in [1..45]]; // Vincenzo Librandi, Aug 25 2017
-
Mathematica
z = 60; s = x/(1 - x^2); p = 1 - s - s^3; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000035 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291219 *) LinearRecurrence[{1, 3, -1, -3, 1, 1}, {1, 1, 3, 5, 11, 21}, 50] (* Vincenzo Librandi, Aug 25 2017 *)
Formula
G.f.: -(1 - x^2 + x^4)/(-1 + x + 3*x^2 - x^3 - 3*x^4 + x^5 + x^6).
a(n) = a(n-1) + 3*a(n-2) - a(n-3) - 3*a(n-4) + a(n-5) + a(n-6) for n >= 7.
Comments