A291224 p-INVERT of (0,1,0,1,0,1,...), where p(S) = (1 - S)^4.
4, 10, 24, 55, 120, 254, 524, 1059, 2104, 4120, 7968, 15244, 28888, 54284, 101240, 187537, 345268, 632122, 1151408, 2087485, 3768280, 6775322, 12136940, 21666712, 38555100, 68401582, 121011800, 213521067, 375813760, 659910710, 1156204452, 2021495767
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4, -2, -8, 5, 8, -2, -4, -1)
Programs
-
Mathematica
z = 60; s = x/(1 - x^2); p = (1 - s)^4; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000035 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291224 *) LinearRecurrence[{4,-2,-8,5,8,-2,-4,-1},{4,10,24,55,120,254,524,1059},40] (* Harvey P. Dale, Mar 22 2025 *)
-
PARI
Vec((2 - x - 2*x^2)*(2 - 2*x - 3*x^2 + 2*x^3 + 2*x^4) / (1 - x - x^2)^4 + O(x^40)) \\ Colin Barker, Aug 25 2017
Formula
a(n) = 4*a(n-1) - 2*a(n-2) - 8*a(n-3) + 5*a(n-4) + 8*a(n-5) - 2*a(n-6) - 4*a(n-7) - a(n-8) for n >= 9.
G.f.: (2 - x - 2*x^2)*(2 - 2*x - 3*x^2 + 2*x^3 + 2*x^4) / (1 - x - x^2)^4. - Colin Barker, Aug 25 2017
Comments